Semi-supervised segmentation of images
نویسندگان
چکیده
Segmentation of patterns in images is usually based on the processing chain ”segmentation – feature extraction – classification”. It will be described, how for an arbitrary application an automatic processing stream can be generated with an initial feed back from an expert. The core of this new method is an automatic generator of optimized classifications and an example based interactive feature extractor. The method is demonstrated at various examples, where the features of the patterns to be segmented differ not very much from their environment.
منابع مشابه
Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas
A semi-supervised segmentation method using a single atlas is presented in this paper. Traditional atlas-based segmentation suffers from either a strong bias towards the selected atlas or the need for manual effort to create multiple atlas images. Similar to semi-supervised learning in computer vision, we study a method which exploits information contained in a set of unlabelled images by mutua...
متن کاملAdversarial Learning for Semi-Supervised Semantic Segmentation
We propose a method 1 for semi-supervised semantic segmentation using the adversarial network. While most existing discriminators are trained to classify input images as real or fake on the image level, we design a discriminator in a fully convolutional manner to differentiate the predicted probability maps from the ground truth segmentation distribution with the consideration of the spatial re...
متن کاملGraph Based Microscopic Images Semi and Unsupervised Classification and Segmentation
In this paper, we propose a general formulation of discrete functional regularization on weighted graphs. This framework can be used to on any multi-dimensional data living on graphs of arbitrary topologies. But, in this work, we focus on the microscopic image segmentation and classification with a semi and unsupervised schemes. Moreover, to provide a fast image segmentation we propose a graph ...
متن کاملSemi-Supervised Multi-Phase Image Segmentation and Application to Deep-Gray-Matter Segmentation in MRI Brain Images
Unsupervised image segmentations are usually implemented without human interactions, but the segmentation is sometime incorrect for complicated images, especially when the features of different classes are very close. On the other hand, supervised image segmentation, utilizing the features obtained by machine-learning and then applying some classification algorithms to the features, can usually...
متن کاملAnalysis of supervised and semi-supervised GrowCut applied to segmentation of masses in mammography images
Breast cancer is already one of the most common form of cancer worldwide. Mammography image analysis is still the most effective diagnostic method to promote the early detection of breast cancer. Accurately segmenting tumors in digital mammography images is important to improve diagnosis capabilities of health specialists and avoid misdiagnosis. In this work, we evaluate the feasibility of appl...
متن کاملSemi-supervised Ultrasound Image Segmentation Based on Direction Energy and Texture Intensity
For the ultrasound images accurate segmentation problem, this paper proposes a novel SVM semi-supervised segmentation method based on major features in curvelet domain. Firstly, ultrasound images were decomposed into different directions and frequencies in the curvelet domain, then the cauchy model was used to simulate curvelet coefficients distribution, thus the main distribution of the curvel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005